
Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle
Department of Computer Science
https://www.cs.usfca.edu/

Abstract and Interfaces
CS 272 Software Development

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
2

● Problem
○ Want a common design for subclasses
○ Able to provide some implementations, but not all

● Solutions
○ Have method return null, hope overridden later
○ Create abstract method, force overriding later

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Abstract Classes
3

● Any class that contains abstract methods
○ Subclasses MUST override all abstract methods

● May also contain non-abstract methods and members

● May not be instantiated, but can be referenced
○ Unable to create an actual object of that class
○ Able to reference using upcasting or downcasting

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

https://www.cs.usfca.edu/
https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Abstract Classes
4

● A constructor may not be abstract
○ Constructors may NOT be overridden
○ Abstract methods MUST be overridden

● A static method may not also be abstract
○ If static, can access via class name
○ If abstract, no implementation through that class

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Polygon Example
5

● All polygons have a list of points
○ Subclasses will initialize different number of points

● All polygons can be drawn using same method
○ Provide non-abstract draw() method

● All polygons have different area functions
○ Provide abstract area() method

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
6

● Problems
○ Want consistent design for subclasses
○ Unable to provide any implementations
○ Can only inherit directly from one superclass

● Solution
○ Use an interface instead of an (abstract) class

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Interfaces
7

● Provide a consistent interface for interaction
○ Uses interface instead of class keyword
○ Think as a lightweight class

● Has only constants members (implicitly public,
static, and final)

● Has only abstract, static, or default methods
(implicitly public)

https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

https://www.cs.usfca.edu/
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Interfaces
8

● Java 8 introduced default methods for interfaces
○ Non-abstract method with a default implementation

● Also allows static methods in interfaces
○ Essentially a default method that does not access

any other interface methods

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

https://www.cs.usfca.edu/
https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Interfaces
9

● Can implement as many interfaces as needed

● Can extend a class and implement one or more
interfaces simultaneously

● Can extend an interface to create hierarchies
○ See Collection hierarchy

https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

https://www.cs.usfca.edu/
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Abstract Classes versus Interfaces
10

● Abstract Classes
○ Implementations and instance members allowed
○ Unable to extend multiple classes

● Interfaces
○ No instance members, limited method options
○ Able to implement multiple interfaces

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

11

Questions?

https://www.cs.usfca.edu/

