USF RN UNIVERSITY OF
A SAN FRANCISCO

CHANGE THE WORLD FROM HERE

Synchronization

CS 272 Software Development

Department of Computer Science
https://www.cs.usfca.edu/

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/

Providing Consistency

e |f multithreading...
o If sharing data between threads...
m |f shared data not already thread safe...
e must synchronize access to that data

CS 272 Software Development Department of Computer Science ﬁ|\4> UNIVERSITY OF
Professor Sophie Engle https://www.cs.usfca.edu/ | 4B SAN FRANCISCO

https://www.cs.usfca.edu/

Synchronization

e Using the synchronized keyword and intrinsic (or
monitor) lock objects to protect blocks of code

e Using the volatile keyword to protect* variables
e Usingwait() and notifyAll() to coordinate threads

e Using conditional synchronization via lock objects

<;|’|\4> UNIVERSITY OF

CS 272 Software Development Department of Computer Science
2 SAN FRANCISCO

Professor Sophie Engle https://www.cs.usfca.edu/

https://www.cs.usfca.edu/

Synchronization

e Using the synchronized keyword and intrinsic (or
monitor) lock objects to protect blocks of code

S, UNIVERSITY OF

CS 272 Software Development Department of Computer Science N
2 SAN FRANCISCO

Professor Sophie Engle https://www.cs.usfca.edu/

https://www.cs.usfca.edu/

Synchronized Keyword
e Used to create atomic (uninterruptible) code
e (Can be applied to blocks of code or an entire method

e |f applied consistently everywhere shared data Is
accessed by multiple threads, provides thread safety

e Requires an intrinsic lock or monitor lock object to
determine which threads to block

<§||\4> UNIVERSITY OF

CS 272 Software Development Department of Computer Science
2 SAN FRANCISCO

Professor Sophie Engle https://www.cs.usfca.edu/

https://www.cs.usfca.edu/

Synchronized Keyword

e An entering thread must attempt to acquire lock
o Only one thread may hold lock object at once
o Other code may use the same lock object

e The thread Is blocked until able to obtain lock object

e The lock object is automatically released when a thread
exits the synchronized code

CS 272 Software Development Department of Computer Science ;’||\4> UNIVERSITY OF
Professor Sophie Engle https://www.cs.usfca.edu/ | 4B SAN FRANCISCO

https://www.cs.usfca.edu/

Thread States

New } { Rum:able } [Terminated
| Waiting | Timed Waiting

__

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.State.html

CS 272 Software Development Department of Computer Science ﬁ|\4> UNIVERSITY OF
Professor Sophie Engle https://www.cs.usfca.edu/ | 4B SAN FRANCISCO

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.State.html

Synchronization Example

private Object lock;
private 1nt a;

public void increment { public void decrement f{
synchronized (lock) { synchronized (lock) {
a++; a--;
CS 272 Software Development Department of Computer Science | b, UNIVERSITY OF

Professor Sophie Engle https://www.cs.usfca.edu/ 7\'/N> SAN FRANCISCO

https://www.cs.usfca.edu/

Intrinsic Locks

Q
/—Q—\

ad ++

—a—

D=
. AN NG N %

<§.\.4> UNIVERSITY OF
2 SAN FRANCISCO

CS 272 Software Development Department of Computer Science
Professor Sophie Engle https://www.cs.usfca.edu/

https://www.cs.usfca.edu/

Intrinsic Locks

e Must specify an object to use as the intrinsic lock

e [Exact behavior depends on type of object used
o e.g. class member versus an instance member

e Controls which threads are blocked and how many
threads may access synchronized block

S, UNIVERSITY OF

CS 272 Software Development Department of Computer Science N
2 SAN FRANCISCO

Professor Sophie Engle https://www.cs.usfca.edu/

https://www.cs.usfca.edu/

Synchronization Example

private Object lock;
private 1nt a;

public void increment { public void decrement f{
synchronized (lock) { synchronized (lock) {
a++; a--;
CS 272 Software Development Department of Computer Science | b, UNIVERSITY OF

Professor Sophie Engle https://www.cs.usfca.edu/ 7\'/N> SAN FRANCISCO

https://www.cs.usfca.edu/

Synchronization Example

private Object lockl; private Object lock2;
private 1rnc-a:
public void increment { public void decrement f{
synchronized (lockl) { synchronized (lock2) {
a+t; a--;
} }
} }

*Assume lock1 and lock2 are different instances...

CS 272 Software Development

Department of Computer Science <§||\4> UNIVERSITY OF
Professor Sophie Engle

https://www.cs.usfca.edu/ | A& SAN FRANCISCO

https://www.cs.usfca.edu/

Synchronization Example

// private Object lock;
private 1nt a;

public void increment { public void decrement f{
synchronized (this) { synchronized (this) {
a++; a--;
CS 272 Software Development Department of Computer Science | b, UNIVERSITY OF

Professor Sophie Engle https://www.cs.usfca.edu/ 7\'/N> SAN FRANCISCO

https://www.cs.usfca.edu/

Synchronization Example

private 1nt a;

public synchronized void increment {

d++,
public synchronized void decrement {
a--;
CS 272 Software Development Department of Computer Science | b, UNIVERSITY OF

Professor Sophie Engle https://www.cs.usfca.edu/ 7\'/N> SAN FRANCISCO

https://www.cs.usfca.edu/

Synchronized Methods

e Any method may be declared synchronized
o public synchronized void method()

e [Equivalent to placing all code within method in a
synchronized (this) block

e All synchronized methods within a class use the same
lock and may not run concurrently

CS 272 Software Development Department of Computer Science <§||\4> UNIVERSITY OF
Professor Sophie Engle https://www.cs.usfca.edu/ | 2 SAN FRANCISCO

https://www.cs.usfca.edu/
https://wiki.sei.cmu.edu/confluence/display/java/LCK00-J.+Use+private+final+lock+objects+to+synchronize+classes+that+may+interact+with+untrusted+code

Synchronization Issues

e Protects code, NOT objects
o Does not protect the lock or any objects within

e Must be used consistently to provide thread safety
o Objects accessed within may still be accessed
concurrently elsewhere in code

e Causes blocking, which slows down code

<§||\4> UNIVERSITY OF

CS 272 Software Development Department of Computer Science
2 SAN FRANCISCO

Professor Sophie Engle https://www.cs.usfca.edu/

https://www.cs.usfca.edu/

USFG/"})UNIVERSITY OF
A SAN FRANCISCO

CHANGE THE WORLD FROM HERE

Software Development Professor Sophie Engle
Department of Computer Science sjengle.cs.usfca.edu

https://sjengle.cs.usfca.edu/

