
Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle
Department of Computer Science
https://www.cs.usfca.edu/

Synchronization
CS 272 Software Development

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

● If multithreading…
○ If sharing data between threads…

■ If shared data not already thread safe…
● must synchronize access to that data

Providing Consistency

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization
● Using the synchronized keyword and intrinsic (or

monitor) lock objects to protect blocks of code

● Using the volatile keyword to protect* variables

● Using wait() and notifyAll() to coordinate threads

● Using conditional synchronization via lock objects

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization
● Using the synchronized keyword and intrinsic (or

monitor) lock objects to protect blocks of code

● Using the volatile keyword to protect* variables

● Using wait() and notifyAll() to coordinate threads

● Using conditional synchronization via lock objects

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronized Keyword
● Used to create atomic (uninterruptible) code

● Can be applied to blocks of code or an entire method

● If applied consistently everywhere shared data is
accessed by multiple threads, provides thread safety

● Requires an intrinsic lock or monitor lock object to
determine which threads to block

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronized Keyword
● An entering thread must attempt to acquire lock

○ Only one thread may hold lock object at once
○ Other code may use the same lock object

● The thread is blocked until able to obtain lock object

● The lock object is automatically released when a thread
exits the synchronized code

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Thread States

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.State.html

Runnable TerminatedNew

Timed Waiting BlockedWaiting

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.State.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization Example
private Object lock;
private int a;

public void increment {
 synchronized (lock) {
 a-+;
 }
}

public void decrement {
 synchronized (lock) {
 a--;
 }
}

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Intrinsic Locks

a+-a++ b+-b++

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Intrinsic Locks
● Must specify an object to use as the intrinsic lock

● Exact behavior depends on type of object used
○ e.g. class member versus an instance member

● Controls which threads are blocked and how many
threads may access synchronized block

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization Example
private Object lock;
private int a;

public void increment {
 synchronized (lock) {
 a-+;
 }
}

public void decrement {
 synchronized (lock) {
 a--;
 }
}

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization Example
private Object lock1;
private int a;

public void increment {
 synchronized (lock1) {
 a-+;
 }
}

*Assume lock1 and lock2 are different instances...

private Object lock2;

public void decrement {
 synchronized (lock2) {
 a--;
 }
}

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization Example
-/ private Object lock;
private int a;

public void increment {
 synchronized (this) {
 a-+;
 }
}

public void decrement {
 synchronized (this) {
 a--;
 }
}

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization Example
private int a;

public synchronized void increment {
 a-+;
}

public synchronized void decrement {
 a--;
}

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronized Methods
● Any method may be declared synchronized

○ public synchronized void method()

● Equivalent to placing all code within method in a
synchronized (this) block

● All synchronized methods within a class use the same
lock and may not run concurrently

** Using “this” to handle synchronization can cause security issues… ***

https://www.cs.usfca.edu/
https://wiki.sei.cmu.edu/confluence/display/java/LCK00-J.+Use+private+final+lock+objects+to+synchronize+classes+that+may+interact+with+untrusted+code

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization Issues
● Protects code, NOT objects

○ Does not protect the lock or any objects within

● Must be used consistently to provide thread safety
○ Objects accessed within may still be accessed

concurrently elsewhere in code

● Causes blocking, which slows down code

https://www.cs.usfca.edu/

Professor Sophie Engle
sjengle.cs.usfca.edu

Software Development
Department of Computer Science

https://sjengle.cs.usfca.edu/

